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Scattering and Transmission Matrix Representations
of Multiguide Junctions

Fa Dai

Abstract—The scattering and transmission matrix represen-
tations of the mode-matching technique are generalized for
multiguide junctions with arbitrarily shaped coupling aper-
tures. A comparison between both representations is given with
respect to the CPU time. The relative convergence phenomenon
arising in cascaded discontinuities of multiguide junctions is in-
" vestigated. A numerical criterion for choosing the correct mode
ratio among the guides is presented. Also studied is the appli-
cation to a kind of multiguide junction between a circular
waveguide and a coaxial wavegnide with hollow inner.

I. INTRODUCTION

ULTIGUIDE JUNCTIONS are frequently encoun-

tered in filters, couplers, slow-wave structures and
so on. Electromagnetic scattering problem at waveguide
junctions has been investigated by means of various tech-
niques. The most general and rigorous one is the Mode-
Matching Technique (MMT), which has received great
attention of numerous researchers since several decades
ago [1]-[7]. This technique employs efficient field expan-
sions in each guide considered and provides a formally
exact solution with matrices of infinite size. Nevertheless,
in application of the technique the truncation problem of
numerical solutions and the proper choice of the eigen-
mode ratio among the guides are worthy to be carefully
considered.

It is a widely accepted view that as long as the number
of modes used in each guide is large enough, the choice
of mode ratio does not affect the numerical results signif-
icantly. It has been shown, however, in [3] that for some
waveguide discontinuities, the requirement of an equal
number of modes at both sides of an abrupt junction may
violate the boundary conditions, resuiting in incorrect nu-
merical solutions, which was called the relative conver-
gence phenomenon and was mathematically analysed in
[8] and [9]. In this paper, we will discuss the relative con-
vergence phenomenon arising in the cascaded disconti-
puities of multiguide junctions. The numerical results re-
veal that as the septum between any two junctions gets
thin enough, the boundary conditions can be exactly sat-
isfied by choosing only a unique mode ratio. With the
other mode ratios, the solutions converge to some differ-
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ent values from the correct result. A numerical criterion
for choosing the optimal mode ratio is suggested, which
should be proportional to the ratio of the waveguide di-
mensions. Moreover it will be shown that the relative
convergence problem can be eliminated or alleviated by
using the optimal mode ratio or with a incident mode of
higher frequency.

Choosing an equal number of modes at both sides of an
abrupt junction or in each guide considered, which is re-
quired by a transmission matrix representation (TMR),
deviates normally from the optimal mode ratio. It means
that the TMR can not be applied without error as long as
an infinitely thin septum between two junctions is consid-
ered. On the other hand, even if the TMR has a simpler
form of matrix calculations than that of a scattering matrix
representation (SMR), we will point out that concerning
the CPU time the TMR is not definitely superior to the
SMR, because the matrix calculations absorb just a minor
part of the CPU time in the whole computation. In fact,
using an equal number of modes in each guide does not
significantly contribute to the convergence, but increase
the CPU time. These disadvantages, however, do not pre-
vent the TMR being applied to the problem of cascaded
discontinuities with finitely thick septa among the junc-
tions provided the CPU time is immaterial to the com-
putation, because the overall transmission matrix can be
obtained much simplier than the overall scattering matrix.

Multiguide discontinuities for an N-furcated parallel-
plate junction were studied in [3] and [4]. Another special
case of a multiple-aperture junction with an infinitely thin
conducting sheet lying in the abrupt plane was investi-
gated in [5]. In [6] and [7] the multiguide discontinuities
were regarded as the two-port discontinuity and some in-
teresting generalizations of the SMR were obtained. In
this paper, we will generalize the solutions of two-port
junction derived in [2] and deduce some concise and gen-
eralized formulations for both the SMR and the TMR,
which could be applicable to the multiguide junctions with
arbitrarily shaped coupling apertures. The formulations
will also be generalized for the cascaded discontinuities.

Furthermore, a kind of multiguide junction between a
circular waveguide and a coaxial waveguide with a hol-
low inner, which is typically used in the Marcatili Cou-
pler [10] and the coupled-cavity slow-wave structure of a
travelling-wave tube (TWT) [11], will be employed to il-
lustrate the applicability of the technique. In the devel-
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opment of computer models of the TWT, it is required to
obtain information about the phase change and the dis-
persion property of the coupled-cavity. Usually this in-
formation is acquired from the expensive ‘‘cold test”

measurement. Direct calculation is difficult because of the -

complexity of the shapes involved [11]. It is therefore de-
sirable to develope a generalized theory to get the infor-
mation from effective field theoretical simulations of CAD
techniques.

II. GENERALIZED FORMULATIONS FOR MULTIGUIDE
JunNcTIONS

A. Continuity of Transverse Electric and Magnetic
Fields

A typical multiguide junction under consideration, the
so called k-furcated guide discontinuity, is illustrated in
Fig. 1, which contains one guide with the largest coupling
aperture of any shape at one side and k small guides with
arbitrarily shaped apertures at another side. The other

types of multiguide junctions are essentially equivalent to

this type. The transverse electric and magnetic fields can
be expanded in terms of the eigenmodes in each guide
adjacent to the junction as

EP =1 (A1 @1+ \O17" - )
H?’) — [h(i)] . ([)\(i)] . [a(i)] — [)\(i)]—-l . [b(i)])

where

(1a)
(1b)

[a®] isan (M® X 1) column matrix with elements
@)
. ay, .
(@1 is an (M® X 1) column matrix with elements
bgl), :
INO] is an (M® x M©) diagonal matrix with ele-
. ments exp (—y & * 2)
[¢®] is an (1 X M®) row matrix with elements

@)
, €m> . _
(A1 isan (1 x M) row matrix with elements A%

and the superscripts ‘‘i’’ denote the ith guide, i =1, 1,
2, + »+ , k; M means the number of expansion modes, m
=1,2, -+, M, a, and b, are the complex amplitudes
of the mth incident mode and scattered mode, respec-
tively; v, = «, + jB3., means propagation constant of the
mth mode; e,, and A, are the transverse field components
of the mth mode, which satisfy the following orthogonal-
ity relation:

S (@ x B9y - dS = QY+ Byms
S

i=11,2 -+ k. [0))
Now we introduce some definitions
[2®] ]
@ @
oy = | N ey = | BT
[2®] (5]

Z=0

Fig. 1. A typical multiguide junction with k-furcated waveguides.

[e®
" = [Qm?
.[Q(")]

and

[4] = [[4D], [49], - - -, [AP]), 3)

where [0 ] is an (M© x M®) diagonal matrix with ele-
ments Qn” and [4"]is an (M x M®) matrix between
guide ‘I’ and “‘i”” with elements

A = SS (e X k") - dS,  i=1,2,- "k

€]
liuﬂl}eqnore, we define two auxiliary matrices:

[R] = 10917 - [4], an (M?P x M) matrix, (5a)

[7] = Q™17 - [41']%, an (M x MD) matrix,
(5b)

where M™ = Z%_ | M® and [A]"™ means the transpose
conjugate matrix of [A].

Considering the boundary conditions required on the
junction plane Z = 0, we obtain the following matrix
equations:

[a®] + BP] = R] - @@®1 + ™Y,
@) - @1 =11 (@1 - O,

(62)
(6b)

B. Scattering Matrix Representation

Considering the multiguide junction as a generalized
2-port discontinuity, the relations among the incident and
scattered modes can be expressed by the SMR as

[b“) 1 [S“ 512] [a"’} 7
b(H)_J S21 522 a(II) . ( )
With some algebraic manipulations, the submatrices of
the generalized S-matrix can be derived from (6) as

Sul = U1 - [P, an MP x MP) matrix,
[Si2] = [P1* [R], an MP x M) matrix,
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[S;] = [T] - [D], an M x MP) matrix,
[S»] = ] — [T1 - [Sx], an M x M) matrix,
®)
where [I] is the unity matrix and
[D] =2 - [U] + [R] - [T},
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incorrect results, which is presented in [3] and also in
Section III of this paper.

* (ii) If the mode number in each guide considered is cho-
sen to be the same, namely, M = M© (G = 1, 2,
<o+, k), [R™] and [TY"] defined in (11) are invertible
matrices. Another form of the T-matrix for a multiguide
junction can be derived from (6):

an MD x MD) matrix. ) w1 =1, wy, -, w*,
With (8) and (9), the generalized S-matrix can be rewrit- 1 =[v®, vy, - -, vy, (14a)
ten as _
1 —-D D - RW D - R7(12)’ 7 . , D - R b
T . p =T . p. R(Il)’ -7 . p. R(IZ), ce T . p. RW
S]=| 19 -p, —-T®.p.-RD, [T .p.RD ... _T@ . p. g (10)
__T(Ik) . p T . p. R(Il), 7@ . p. R(12), S g TH . D . R(Ik)_
where
[R™] = (V17" - (4™ =[] - (s~ - (s, With
(11a) (U] = (e - [RD] - [T®]7")/2k,
[70] = [0V - ™77+ V#] = (k- [R®] + [T™17")/2k,
= 1 - 11 - st (11b) R (140)

Thus, the S-matrix of a multiguide junction is represented
by the individual matrix [R )7 and [TY] or the S-param-
eter [SY)] of the 2-port discontinuity.

C. Transmission Matrix Representation

The relations among the incident and scattered modes
of multiguide discontinuities can also be expressed by the

TMR as
b L1 il ™)

According to the different choices of the mode ratio,
there are two ways to obtain the submatrices of the gen-
eralized T-matrix.

(i) If the mode numbers at both sides of the junction are
chosen to be the same, namely, M = M0 [R] and [T]
defined in (5) are invertible matrices, so that a formula-

tion similar to the TMR of the 2-port junction can be de-
rived from (6):

(12)

[U] = (R1 — [T17")/2

and

V1= (R] + [T17")/2. (13)

For some discontinuities, the presetting of M® = M@
might violate the boundary conditions and lead to some

It will be demonstrated in this paper that the requirement
of an equal number of modes in each guide may result in
an incorrect numerical solution too.

D. Scattering Matrix Representation for Cascaded
Discontinuities

We discuss only the cascaded discontinuities of two
multiguide junctions separated with a length L, shown in
Fig. 2. With the formulations given in [2], one can pro-
ceed to get the overall S-matrix of cascaded series. From
(7) we have

{b(’)} {Sﬁ Sfliz} {a(’)} for junction A
= . , J 31
by’ S5 S5l Laf’

(15a)
and
pD Sllil Sllgz ad . '
p» = s8 st . atm |’ for junction B
(15b)

In section ‘“II’’ between junction A and B, the S-matrix
[SY)] can be defined as

/i (/4 i I
= . a
11 I 17 m |’
agn] " Lsp sw] " Lo



DAL SCATTERING AND TRANSMISSION MATRIX REPRESENTATION OF MULTIGUIDE JUNCTIONS

-5

N
a
3 S

a(III)

[¢5] (111}
o
N NE b

B
an (In
.

X

Fig. 2. Multiguide discontinuities with two abrupt junctions.

with
M
Sjj
s&
[s§"1 = ’ . hj=1,2. (16b)
Sy
where [§©],i=1,2, - - - , k, is the S-matrix from junc-

tion 4 to B through the ith furcated guide, which may
consists of some abrupt junctions or simply a uniform line.
For the uniform line we have

‘ 0 A®
[sO1 = [ o | ]]-
1 o

With some algebraic computations for (15) and (16), the
combined S-matrix from guide *“I’” to *“III’’ can be found

out
[b(l) ] _ -<[st } N [Si‘z }
b st Sh
-1
5%
. [] _ S(II) |: }}
[ 1 =51 52
S?l a®
sy - [ ng) . [a("” . (18

/In order to avoid the matrix inversion of [S™’17!, two
more matrix multiplications are employed in (18).

a7

E. Transmission Marrix Representation for Cascaded
Discontinuities

In a similar way to obtain [SYP], the T-matrix for the
section ‘‘II’’ can be defined as

[bﬁf”] ﬁ‘[Tﬁ’{) T%”} . [b(”)} (19%)
o) " Lrg ) Lol
with
T
2)
{an Tij ;o
13’1 = , i,j=1,2. (19b)

1541

where [T®]1,i = 1,2, - -+, k, is the T-matrix through
the ith furcated guide. Again for a uniform line we have

. 0 ANOT!
[T<'>]=[ U 1 ]
NOT  [0]

With [TY"], the combined T-matrix from guide ‘I’ to
“IIl’’ can be simply obtained from

[0} (n amy
a _ [TA] . Ty Ty . [TB]_I . a
b ) T(IIII) T(IIZI) b am |-
2D

where [T*] and [T?] are the T-matrices of junction A and
B, which can be found out from (13) or (14), depending
on the choice of eigenmode ratio. It is obvious that com-
puting the combined 7T-matrix in (21) is much easier than
doing the combined S-matrix in (18). Furthermore the
overall T-matrix can be achieved by simply multiplicating
the individual T-matrices of all cascaded series. From this
point of view, the TMR gains an advantage over the SMR.
However, it should be noted that due to [A®]7! of the
evanescent modes, the T-matrix of a uniform line may
contain exponential functions with positive arguments,
which lead to an overflow in the computation. A combi-
native application of the TMR and the SMR is therefore
recommended for the cascaded discontinuities of multi-
guide junctions.

20

III. APPLICATION TO A MULTIGUIDE JUNCTION BETWEEN
A CIRCULAR WAVEGUIDE AND A COAXIAL WAVEGUIDE
wITH HoLLOW INNER

To illustrate the applicability of the formulations de-
rived above, we consider a 4-guide discontinuities with
two abrupt junctions, shown in Fig. 3, which is typically
used in the coupled-cavity slow-wave structure and the
Marecatili coupler. In this structure, a kind of multiguide
junction between a circular waveguide and a coaxial
waveguide with hollow inner is involved. In order to an-
alyse the effect of different mode ratios on the numerical
results, the SMR is employed. For the discontinuity with
a single junction related to the first three guides, Fig. 4
shows the Er components of transverse electric fields at
both sides of the junction, in which both continuity and
convergence of the transverse field are presented.

A. Optimal Choice of the Mode Ratio

Although the correct or close to the correct solution can
be obtained by choosing different mode ratios, especially
for the discontinuity with single junction, there is a unique
mode ratio for the best numerical approximation. On the
other hand, choosing some mode ratios does not signifi-
cantly benefits the numerical computation but increase the
CPU time, even though they might lead to correct solu-
tions in some cases. It is, hence, important to find out an
optimal mode ratio as a guide for choosing the eigen-
modes. We found that the cutoff frequencies of higher or-
der modes can serve as a criterion for the correct choice -
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Fig. 3. 4-guide discontinuities with two abrupt junctions. ‘‘1’: circular
waveguide with radius a;, *‘2”’: coaxial waveguide with outer radius a,
and inner radius by, ¢‘3”’: circular waveguide with radius a;, ‘4”’: circular
waveguide with radius a, = a;.
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Fig. 4. Transverse electric field along R axis for the 3-guide discontinuity
with a single junction. TE,,; with A = 5a incidence from “1°". ‘1”’: solid,
40 modes used, a, = 4a; ‘‘2°’: long dash, 40 modes used, a, = 3a, b; =
2a; “*3°: short dash, 40 modes used, a; = a.

of the moae ratio. 1t means that the field expansion series
in (1) should be truncated so that the cutoff frequency of
the highest order mode in each guide is roughly the same.
'Hence, the mode ratio, being proportional to the ratio of
the guide dimensions, can be considered as the correct
choice, by reason that the cutoff frequency is approxi-
mately proportional to the ratio of mode number to guide
dimension in many cases. Thus we have

e Mo® Mo @D
cee i g®, gum

Mo®D MoV : Mo®:

=d?:4V:d?: (22)
where Mo® is the optimal mode number in the ith guide
and d* is the dimension of the ith guide. For the structure
in Fig. 3, guide ‘*1°" and ‘‘4’’ have the same dimensions,
so MoV = Mo™.

B. Relative Convergence Problem

For the discontinuities with two or more abrupt junc-
tions, the effect of evanescent modes with higher order
can not be neglected, when the septa between the junc-
tions get thin enough. In that case, the evanescent modes
excited at different junctions might strongly interfere with
each other. With relatively more modes used in the mul-
tiguide block between two junctions, more evanescent
modes will be excited. As a result, the interference of
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evanescent modes become so strong that it ruins the

boundary and edge conditions, resulting in uncorrect so-
lutions—the so called relative convergence phenomenon.
According to the analysis, it can be predicted that the rel-
ative convergence problem can be alleviated or eliminated
by using less modes among the junctions or with an in-
cident mode of higher frequency. ‘

In Fig. 5 the relative convergence phenomenon is dem-
onstrated by drawing the transverse electric fields. It can
be seen from Fig. 5(a) and (b) that with an equal number
of modes in each guide or at both sides of the junction,
ie., MO (= M¥):M®P:M® = 1:1:10r2:1:1, the
numerical solutions fail to satisfy the boundary conditions
at the junction for a septum of L = 10~%a. Fig. 5(c) dem-
onstrates that the relative convergence problem can be
eliminated with the optimal mode ratio of (4:1; 1). As the
septum gets longer, e.g., L = a, the effect of higher order
modes becomes so week after the attenuation distances
that even with a made ratio of (1:1:1), the field plot will
not be ruined, as shown in Fig. 5(d). Even so, it is evident
that using an equal number of modes in each guide or at
both sides of the junction consums much more CPU time
than choosing the optimal mode ratio. Frequently the SMR
with a proper choice of mode ratio is superior to the TMR,
as long as the CPU time is considered. By choosing the
equal number of modes, the TMR achieves a simpler form
of matrix calculations, yet the matrix size has to be in-
creased, which absorbs more CPU time than operating the
SMR with complexity of the form. Moreover it has been
found that the most CPU time normally is not consumed
by matrix calculations, but by other operations such as
integration, solving the eigenmodes and eigenequations,
etc. Therefore using as few modes as possible will ac-
tually save much more CPU time.

In Fig. 6, the convergence of the S-parameter, by tak-
ing the magnitude of the dominant mode reflection coef-
ficient Sy, (1, 1) as an example, has been studied. Fig.
6(a) shows the relative convergence phenomenon for a
septum of L = 10%a. It can be seen that even with large
numbers of the eigenmodes, the S-parameter does not
converge to the same value with different mode ratios.
Comparing with the optimal mode ratio of 4:1: 1, if fewer
modes are used between the two junctions, e.g., the ratio
of (8:1:1), the convergent values of S;;(1, 1) are not
greatly in error. However, for M® > Mo® and M® >
Mo®) | e.g., with an equal number of modes at both sides
of the junction (2:1:1) or in each guide (1:1:1), the re-
sults deviate rather greatly from the correct value. Using
the same percentage (80%) of the convergent value ob-
tained by the optimal ratio as the ordinate scale but with
an incident mode of higher frequency, it is interesting to
note, in Fig. 6(b), that the relative convergence problem
can be alleviated by increasing the effect of the dominant
modes, as predicted above. As the septum gets long
enough (e.g., L = a), the disappearance of the relative
convergence is observed in Fig. 6(c), in which the same
percentage (80%) for choosing the ordinate scale was
used. In this case, the choice of mode ratio does not in-
fluence the convergence of S-parameter significantly.
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Fig. 5. Relative convergence phenomenon demonstrated by field plots of
4-guide discontinuities with two junctions. TE;; with A = 5a incidence
from ‘1°’, 120 modes used in ““1”’, a@; = a, = 4a, a, = 3a, b, = 2a, a,
= a. (a) Septum L = 107 %a, mode ratio 1:1:1, CPU. time 8 min. (b)
Septum L = 10~%a, mode ratio 2:1:1, CPU time 2.2 min. (¢) Septum L
= 10"%a, mode ratio 4: 1: 1, CPU time 1.1 min. (d) SeptumL = a, mode
ratio 1:1:1, CPU time 6.4 min.
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Fig. 6. Relative convergence problem studied by S-parameters of 4-guide
discontinuities with two junctions. a, = a4, = 4a, a, = 3a, b, = 2a,a; =
a. Septum L, incident wavelength- X. (@) L = 107 %, N = 5a. (b) L =
107%a, A = 1.54. (©) L = a, X\ = 5a. ‘

IV. CoNCLUSION

The scattering and transmission matrix representation
of the mode-matching technique have been generalized
for multiguide junctions. The prerequisite of this tech-
nique is, however, an available solution of the eigen-

“modes in each guide. The relative convergence phenom-

enon that occurs in cascaded discontinuities has been
analyzed by comparing the solutions obtained under dif-
ferent conditions. It has been shown that even with large
number of eigenmodes, the relative convergence might

“ruin the numerical solutions, as long as the mode ratio is

improperly chosen. A numerical criterion for choosing the
correct mode ratio has been given, which can be used as
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a guide to alleviate relative convergence in the computa-
tion. The convergence and consistence of the field plots
drawn at both sides of the abrupt junction confirm the ac-
curacy of the simulative solutions. Using the formulations
obtained above provides a formally exact, fast and rigor-
ous solution to many problems of multiguide junctions,
such as filters, couplers, slow-wave structures, finlines
and so on. ‘
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