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Scattering and Transmission Matrix Representations

of Multiguide Junctions
Fa Dai

Abstract—The scattering and transmission matrix represen-

tations of the mode-matching technique are generalized for

multiguide junctions with arbitrarily shaped coupling aper-

tures. A comparison between both representations is given with
respect to the CPU time. The relative convergence phenomenon

arising in cascaded discontinuities of multiguide junctions is in-
vestigated. A numerical criterion for choosing the correct mode
ratio among the guides is presented. Also studied is the appli-

cation to a kind of multiguide junction between a circular

waveguide and a coaxial waveguide with hollow inner.

I. INTRODUCTION

M ULTIGUIDE JUNCTIONS are frequently encoun-

tered in filters, couplers, slow-wave structures and

so on. Electromagnetic scattering problem at waveguide

junctions has been investigated by means of various tech-

niques. The most general and rigorous one is the Mode-

Matching Technique (MMT), which has received great

attention of numerous researchers since several decades

ago [1]–[7]. This technique employs efficient field expan-

sions in each guide considered and provides a formally

exact solution with matrices of infinite size. Nevertheless,

in application of the technique the truncation problem of

numerical solutions and the proper choice of the eigen-

mode ratio among the guides are worthy to be carefully

considered.

It is a widely accepted view that as long as the number

of modes used in each guide is large enough, the choice

of mode ratio does not affect the numerical results signif-

icantly. It has been shown, however, in [3] that for some

waveguide discontinuities, the requirement of an equal

number of modes at both sides of an abrupt junction may

violate the boundary conditions, resulting in incorrect nu-

merical solutions, which was called the relative conver-

gence phenomenon and was mathematically analysed in

[8] and [9]. In this paper, we will discuss the relative con-
vergence phenomenon arising in the cascaded disconti-

nuities of multiguide junctions. The numerical results re-

veal that as the septum between any two junctions gets

thin enough, the boundary conditions can be exactly sat-

isfied by choosing only a unique mode ratio. With the

other mode ratios, the solutions converge to some differ-
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ent values from the correct result. A numerical criterion

for choosing the optimal mode ratio is suggested, which

should be proportional to the ratio of the waveguide di-

mensions. Moreover it will be shown that the relative

convergence problem can be eliminated or alleviated by

using the optimal mode ratio or with a incident mode of

higher frequency.

Choosing an equal number of modes at both sides of an

abrupt junction or in each guide considered, which is re-

quired by a transmission matrix representation (TMR),

deviates normally from the optimal mode ratio. It means

that the TMR can not be applied without error as long as

an infinitely thin septum between two junctions is consid-

ered. On the other hand, even if the TMR has a simpler

form of matrix calculations than that of a scattering matrix

representation (SMR), we will point out that concerning

the CPU time the TMR is not definitely superior to the

SMR, because the matrix calculations absorb just a minor

part of the CPU time in the whole computation. In fact,

using an equal number of modes in each guide does not

significantly contribute to the convergence, but increase

the CPU time. These disadvantages, however, do not pre-

vent the TMR being applied to the problem of cascaded
discontinuities with finitely thick septa among the junc-

tions provided the CPU time is immaterial to the com-

putation, because the overall transmission matrix can be

obtained much simplier than the overall scattering matrix.

Multiguide discontinuities for an N-furcated parallel-

plate junction were studied in [3] and [4]. Another special

case of a multiple-aperture junction with an infinitely thin

conducting sheet lying in the abrupt plane was investi-

gated in [5]. In [6] and [7] the multiguide discontinuities

were regarded as the two-port discontinuity and some in-

teresting generalizations of the SMR were obtained. In

this paper, we will generalize the solutions of two-port

junction derived in [2] and deduce some concise and gen-
eralized formulations for both the SMR and the TMR,

which could be applicable to the multiguide junctions with

arbitrarily shaped coupling apertures. The formulations

will also be generalized for the cascaded discontinuities.

Furthermore, a kind of multiguide junction between a

circular waveguide and a coaxial waveguide with a hol-

low inner, which is typically used in the Marcatili Cou-

pler [10] and the coupled-cavity slow-wave structure of a

travelling-wave tube (TWT) [11], will be employed to il-

lustrate the applicability of the technique. In the devel-
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opment of computer models of the TWT, it is required to

obtain information about the phase change and the dis-

persion property of the coupled-cavity. Usually this in-

formation is acquired from the expensive “cold test”

measurement. Direct calculation is difficult because of the’

complexity of the shapes involved [11]. It is therefore de-

sirable to develope a generalized theory to get the infor-

mation from effective field theoretical simulations of CAD

techniques.

II. GENERALIZED FORMULATIONS FOR MULTIGUIDE

JUNCTIONS

A. Continui@ of Transverse Electric and Magnetic

Fields

A typical multiguide junction under consideration, the

so called k-furcated guide discontinuity, is illustrated in

Fig. 1, which contains one guide with the largest coupling

aperture of any shape at one side and k small guides with

arbitrarily shaped apertures at another side. The other

types of multiguide junctions are essentially equivalent to

this type. The transverse electric and magnetic fields can

be expanded in terms of the eigenmodes in each guide

adjacent to the junction as

E$) = [e(i)] s ([~(i)] “ [a(i)] + [A(’) ]-l . [b(’)]) (la)

@ = [h(i)] . ([~(i)] . [a@)] – [A(i)]-l o [b(i)]) (lb)

where

[a(i)] is an (M(i) x 1) column matrix with elements
a(i)

[b(i)] is a; &f@) x 1) column matrix with elements
b$),

[A(i)] is an (M(i) x M(i)) diagonal matrix with ele-

ments exp ( –T # “ z)
[e(i)] is an (1 “X kl(i) ) row matrix with elements

e(i)

[h ‘i)] is a: ~1 x M(i)) row matrix with elements h ~!

and the superscripts “i” denote the ith guide, i = I, 1,

2,”””, k; M means the number of expansion modes, m

=1,2,”””, M; am and b~ are the complex amplitudes

of the mth incident mode and scattered mode, respec-

tively; ~~ = am + jfl~ means propagation constant of the

mth mode; em and h~ are the transverse field components

of the mth mode, which satisfy the following orthogonal-

ity relation:

!
(e$) x hf)”) “ dS = Q$) . &~,

s,

i= 1,1,2, -””, k. (2)

Now we introduce some definitions

‘a(’’)]=[vb(’z)]=!i

E
“ II”

,1.

+

~

&ss&mss
‘k”

——
Z=o

Fig. 1. A typical multiguide junction with k-furcated waveguides.

[Q(II)] =

..-

and

[Q(k)]d

[A] = [[A(ll)], [/l(z*)], “ “ “ , [A(l’)]], (3)

where [Q ‘i ) ] is an (M(i) X ~(i)) diagonal matrix with ele-

ments Qn ‘i) and [A ‘Ii)] is an (M(l) X h?(i)) matrix between

guide “I” and “i” with elements

A ~~) =
!

(e!) x h!)”) . dS, i=l,2, ”””, k.
s,

(4)

Furthermore, we define two auxiliary matrices:—

[R] = [Q(I)]- 1 “ [A], an (ill(~) X M(lf)) matrix, (5a)

[T] = [[Q(~~)l-l o [A]’]*, an (M(lZ) x M(’)) matrix,

(5b)

where Z@) = Z ~. 1 M(i) and [A]~* means the transpose

conjugate matrix of [A].

Considering the boundary conditions required on the

junction plane Z = O, we obtain the following matrix

equations:

[a ‘1)] + [b(~)] = [R] “ ([a(z’)] + [b(r~)]), (6a)

[b@)] – [a(Zz~] = [T] . ([a(~)] – [b(’) ~). (6b)

B. Scattering Matrix Representation

Considering the multiguide junction as a generalized

2-port discontinuity, the ~elations among the incident and

scattered modes can be expressed by the SMR as

With some algebraic manipulations, the submatrices of

the generalized S-matrix can be derived from (6) as

“[Sll ] = [Z] – [D], an (M(l) x M(z)) matrix,

[S12] = [D] . [R], an (M(I) x M(Z1)) matrix,
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[&l ] = [~] o [D], an (M(~~) X M(r)) matrix,

[$2] = [z] – [T] “ [s~~], an(M(II)x M(II)) matrix,

(8)

where [Z] is the unity matrix and

[D] = 2 “ [[z] + [R] “ [T]]-’,

an (M(z) X M(z)) matrix. (9)

With (8) and (9), the generalized

ten as

[

I–D,

TC1l) . D, z

[s] = 71(12). D, _

S-matrix can be rewrit-

D . R(n),
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incorrect results, which is presented in [3] and also in

Section III of this paper.

(ii) If the mode number in each guide considered is cho-

sen to be the same, namely, M(l) = M(i) (i = 1, 2,
. . . k), [R(zi) ] and [T(12) ] defined in (11) are invertible
matri~es. Another form of the ~-matrix for a multiguide

junction can be derived from (6):

[u] = [[u@)], [u(zZ)],“ “ “ , [u(z~)]],
[v] = [[w], [P], “ “ “ , [w]], (14a)

D. R(m, . . . . D . R (W 7
— T(11) . D . R(ll)

,
_T(Il) . D . R(12) . . . , _T(ll) . D . R@)

T(12) . D . R (I1)
7

I_ T(12). D.Rk . . .
> 7

_ T(I4 . D . R@+ (lo)

. . . ,

L @d . D, _ jr(@ . D . R(I1)
,

_T@) . D . R(12) . . .
,

, I _ T(Ik) . D . #@~

where

[R(~l)] = [Q([)]-l . [A@)] = [[z] – [Sy;)]]-1 . [Sff)], with

(ha)
[U(’i)] = (k . [R(”)] – [T(’i)]-’ )/2k,

[T(~i)] = [[Q(i) ]-l . [#i)]’]* [@)] = (/l . [R(”)] + [T(li)]-1)/2k,

(llb) i=l,2, ”””, k. (14b)= [s!?1 “ [[z] – [s\’;)]]-’.

Thus, the S-matrix of a multiguide junction is represented
It will be demonstrated in this paper that the requirement

of an equal number of modes in each guide may result in
by the individual matrix [R(li) ] and [T({’ ) ] or the S-param-

eter [S(Zi) ] of the 2-port discontinuity.
an incorrect numerical solution too.

C. Transmission Matrix Representation
D. Scattering Matrix Representation for Cascaded

Discontinuities

The relations among the incident and scattered modes
We discuss only the cascaded discontinuities of two

of multiguide discontinuities can also be expressed by the

TMR as .
multiguide junctions separated with a length L, shown in

Fig. 2. With the formulations given in [2], one can pro-

[;:l=[:;: :11 “[2 ’12)“)wehave
teed to get the overall S-matrix of cascaded series. From

Fb(’q rsfl s;2j Fa(’)1
According to the different choices of the mode ratio,

there are two ways to obtain the submatrices of the gen-

eralized T-matrix.

(i) If the mode numbers at both sides of the junction are

chosen to be the same, namely, M(z) = M(lZ), [R] and [T]

defined in (5) are invertible matrices, so that a formula-

tion similar to the TMR of the 2-port junction can be de-

rived from (6):

[U] = ([R] - [T]-1)/2

and

[V] = ([R] + [T]-1)/2. (13)

For some discontinuities, the presetting of M(z) = M(ll)

might violate the boundary conditions and lead to some

kd =~% d “ la$z)~’‘orjunctiOnA
(15a)

and

[:BI=[23‘[:Bl ‘Orjunct
(15b)

In section ‘ ‘ZZ” between junction A and B, the S-matrix
[S(Z1)] can be defined as
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Fig. 2. Multiguide discontinuities with twoabmpt junctions.

with

[ 1’
q)

q?)
7 i,j = 1,2. (16b)[s$0]= “..

L
where [S(;) ], i = 1, 2, “ o 0 , k, is the S-matrix from junc-

tion A to B through the ith furcated guide, which may

consists of some abrupt junctions or simply a uniform line.

For the uniform line we have

‘S(i)’=k’i‘;71 (17)

With some algebraic computations for (15) and (16), the

combined S-matrix from guide “Z” to ‘ ‘ZZZ” can be found

out

[5J=’([S” S,J+[s;’ SLI
..

[ [ 11
1

s;~. [~] –’[S(ZO].
sg~

. [s(11)] .
[s’l SJ”[5J ’18)

‘In order to avoid the matrix inversion of [S ‘~~)] – 1, two

more matrix multiplications are employed in (18).

E. Transmission Matrix Representation for Cascaded

Discontinuities

In a similar way to obtain [S(ZI) ], the T-matrix for the

section “H” can be defined as

with

:: I=’[z3“[219(19a)

n(l)

U

T~) .19i, j = 1, 2. (19b)

where [T(i) ], i = 1, 2, “ “ “ , k, is the T-matrix through

the ith furcated guide. Again for a uniform line we have

‘[ [0] [A(i)]-l
w(’)] = ~x(i)l

1[0] “
(20)

With [T(ll) ], the combined T-matrix from guide “Z” to

‘ ‘ZU” can be simply obtained from

(21)

where [T~ ] and [T~ ] are the T-matrices of junction A and

B, which can be found out from (13) or (14), depending

on the choice of eigenmode ratio. It is obvious that com-

puting the combined T-matrix in (21) is much easier than

doing the combined S-matrix in (18). Furthermore the

overall T-matrix can be achieved by simply multiplicating

the individual T-matrices of all cascaded series. From this

point of view, the TMR gains an advantage over the SMR.

However, it should be noted that due to [h ‘i)]- 1 of the

evanescent modes, the T-matrix of a uniform line may

contain exponential functions with positive arguments,

which lead to an overilow in the computation. A combi-

native application of the TMR and the SMR is therefore

recommended for the cascaded discontinuities of multi-

guide junctions.

III. APPLICATION TO A MULTIGUIDE JUNCTION BETWEEN

A CIRCULAR WAVEGUIDE AND A COAXIAL WAVEGUIDE

WITH HOLLOW INNER

To illustrate the applicability of the formulations de-

rived above, we consider a 4-guide discontinuities with

two abrupt junctions, shown in Fig. 3, which k typically

used in the coupled-cavity slow-wave structure and the

Marcatili coupler. In this structure, a kind of multiguide

junction between a circular waveguide and a coaxial

waveguide with hollow inner is involved. In order to an-

alyse the effect of different mode ratios on the numerical

results, the SMR is employed. For the discontinuity with

a single junction related to the first three guides, Fig. 4

shows the Er components of transverse electric fields at

both sides of the junction, in which both continuity and

convergence of the transverse field are presented.

A. Optimal Choice of the Mode Ratio

Although the correct or close to the correct solution can

be obtained by choosing different mode ratios, especially

for the discontinuity with single junction, there is a unique

mode ratio for the best numerical approximation, On ‘the

other hand, choosing some mode ratios does not signifi-

cantly benefits the numerical computation but increase the

CPU time, even though they might lead to correct solu-

tions in some cases. It is, hence, important to find out an

optimal mode ratio as a guide for choosing the eigen-

modes. We found that the cutoff frequencies of higher or-

der modes can serve as a criterion for the correct choice



1542 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 7, JULY 1992

A B

Fig. 3. 4-guide discontinuities with two abrupt junctions. ‘‘ 1‘’: circular
waveguide with radius al, ‘’2”: coaxial waveguide with outer radius a2

and inner radius bz, ‘‘3”: circular waveguide with radius as, ‘’4”: circular

waveguide with radius a~ = a,.

200

150

100

50

0
1 2 3 4

R/a +

Fig. 4. Transverse electric field along R axis for the 3-guide discontinuity

with a single junction. TE,, with A = 5a incidence from ‘‘ 1‘’. ‘‘ 1‘’: solid,
40 modes used, al = 4a; “2”: long dash, 40 modes used, a~ = 3a, bz =

2a; “3”: short dash, 40 modes used, as = a.

of the moae ratio. it—means that the field expansion series

in (1) should be truncated so that the cutoff frequency of

the highest order mode in each guide is roughly the same.

Hence, the mode ratio, being proportional to the ratio of

the guide dimensions, can be considered as the correct

choice, by reason that the cutoff frequency is approxi-

mately proportional to the ratio of mode number to guide

dimension in many cases. Thus we have

~o(O ; ~o(l) : ~o(2) . . . . :~o(k) ; MO(ZZ1)

= d(~):d(l) :d(2): “ “ “ :dk) :(P (22)

where Mo ‘i ) is the optimal mode number in the ith guide

and d(i) is the dimension of the ith guide. For the structure
in Fig. 3, guide c”1‘’ and ‘’4” have the same dimensions,

so MO(l) = MO(4).

B. Relative Convergence Problem

For the discontinuities with two or more abrupt junc-

tions, the effect of evanescent modes with higher order

can not be neglected, when the septa between the junc-

tions get thin enough. In that case, the evanescent modes

excited at different junctions might strongly interfere with

each other. With relatively more modes used in the mul-

tiguide block between two junctions, more evanescent

modes will be excited. As a result, the interference of

evanescent modes become so strong that it ruins the

boundary and edge conditions, resulting in uncorrect so-

lutions—the so called relative convergence phenomenon.

According to the analysis, it can be predicted that the rel-

ative convergence problem can be alleviated or eliminated

by using less modes among the junctions or with an in-

cident mode of higher frequency.

In Fig. 5 the relative convergence phenomenon is dem-

onstrated by drawing the transverse electric fields. It can

be seen from Fig. 5(a) and (b) that with an equal number

of modes in each guide or at both sides of the junction,

i.e. , M(1) (= ~4)):M(2):M(3) = 1:1:1 or 2: 1:1., the

numerical solutions fail to satisfy the boundary conditions

at the junction for a septum of L = 10–9a. Fig. 5(c) dem-

onstrates that the relative convergence problem can be

eliminated with the optimal mode ratio of (4: 1 ; 1). As the

septum gets longer, e.g., L = a, the effect of higher order

modes becomes so week after the attenuation distances

that eve~ with a ~n~e ratio off 1-1: 1), the field plot will
not be ruined, as shown in Fig. 5(d). Even so, it is evident

that using an equal number of modes in each guide or at

both sides of the junction consums much more CPU time

than choosing the optimal mode ratio. Frequently the SMR

with a proper choice of mode ratio is superior to the TMR,

as long as the CPU time is considered. By choosing the

equal number of modes, the TMR achieves a simpler form

of matrix calculations, yet the matrix size has to be in-

creased, which absorbs more CPU time than operating the

SMR with complexity of the form. Moreover it has been

found that the most CPU time normally is not consumed

by matrix calculations, but by other operations such as

integration, solving the eigenmodes and eigenequations,

etc. Therefore using as few modes as possible will ac-

tually save much more CPU time.

In Fig. 6, the convergence of the S-parameter, by tak-

ing the magnitude of the dominant mode reflection coef-

ficient SI ~(1, 1) as an example, has been studied. Fig.

6(a) shows the relative convergence phenomenon for a

septum of L = 10–9a. It can be seen that even with large

numbers of the eigenmodes, the S-parameter does not

converge to the same value with different mode ratios.

Comparing with the optimal mode ratio of 4:1:1, if fewer

modes are used between the two junctions, e.g., the ratio

of (8: 1: 1), the convergent values of SI ~(1, 1) are not

greatly in error. However, for M(2) > Mo ‘2) and M(3) >
Mo (3), e.g., with an equal number of modes at both sides

of the junction (2: 1: 1) or in each guide (1 :1: 1), the re-

sults deviate rather greatly from the correct value. Using

the same percentage (80 %) of the convergent value ob-

tained by the optimal ratio as the ordinate scale but with

an incident mode of higher frequency, it is interesting to

note, in Fig. 6(b), that the relative convergence problem

can be alleviated by increasing the effect of the dominant

modes, as predicted above. As the septum gets long

enough (e. g., L = a), the disappearance of the relative

convergence is observed in Fig. 6(c), in which the same

percentage (80 %) for choosing the ordinate scale was

used. In this case, the choice of mode ratio does not in-

fluence the convergence of S-parameter significantly.
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1 2 3 4

R/a 4

Fig. 5. Relative convergence phenomenon demonstrated by field plots of
4-guide discontinuities with two junctions. TE,, with A = 5a incidence

from “l”, 120 modes used in “l”, al = ab = 4a, a2 = 3a, bz = 2a, as
= a. (a) Septum L = 10-9a, mode ratio 1:1:1, CPU time 8 min. (b)

Septum L = 10-9a, mode ratio 2:1:1, CPU time 2.2 min. (c) Septum L
= 10-9a, mode ratio 4:1:1, CPU time 1.1 min. (d) Septum L = a, mode
ratio 1:1:1, CPU time 6.4 min.
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convergence problem studied by S-parameters of 4-guideFig. 6. Relative

discontinuities with two junctions. a, = a4 = 4a, a2 = 3a, b2 = 2a, as =
a. Septum L, incident wavelength A. (a) L = 10-9a, h = 5a. (b) L =
10-9a, h = 1.50.. (c) L = a, A = 5a.

IV. CONCLUSION

The scattering and transmission matrix representation

of the mode-mlatching technique have been generalized

for multiguide junctions. The prerequisite of this tech-

nique is, however, an available solution of the eigen-

, modes in each guide. The relative convergence phenom-
enon that occurs in cascaded discontinuitim has been

analyzed by comparing the solutions obtained under dif-

ferent conditions. It has been shown that even with large

number of eigenmodes, the relative convergence might

‘ruin the numerical solutions, as long as the mode ratio is

improperly chosen. A numerical criterion for choosing the

co;ect mode ratio has been given, which can be used as



1544 IEEE TRANSACTIONS

a guide to alleviate relative convergence in the comuuta-

ti&. The convergence and consist~nce of the field plots

drawn at both sides of the abrupt junction confirm the ac-

curacy of the simulative solutions. Using the formulations

obtained above provides a formally exact, fast and rigor-

ous solution to many problems of multiguide junctions,

such as filters, couplers, slow-wave structures, finlines

and so on.
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